

IRMMW-THz 2022

28 August - 2 September 2022 Delft, The Netherlands

47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) 2022

Contactless Cost-effective Polarizer for mm-Wave Dielectric Rod Waveguide

Ashish Kumar¹, Daniel C. Gallego¹, Daniel Headland¹, Mushin Ali¹, Nikolaos Xenidis², Dmitri Lioubtchenko² and Guillermo Carpintero¹

¹Optoelectronics and Laser Technology Group (GOTL), University Carlos III of Madrid, 28911 Madrid, Spain.

²Micro and Nanosystem, KTH Royal Institute of Technology,100044 Stockholm, Sweden.

Tu-AM-4-2

MOTIVATION AND BACKGROUND

PRINCIPLE OF OPERATION

EXPERIMENT AND RESULTS

Motivation

- ➤ Many mm-wave applications exploit polarization diversity
 - Communications for higher overall bandwidth.
 - Measurement techniques such as Ellipsometry as well.
- > Require well-defined orthogonal polarizations

➤ Require mm-wave polarizers for signal integrity

Spectroscopic Ellipsometer

[https://cense.engr.uky.edu/]

How did it begin

THE PROPERTY OF THE PARTY OF TH

- Jagadish Chandra Bose → late 18th century
- Book pages interleaved with tinfoil → 60 GHz polarizer

Bose's polarizers with cut-off metal plate grating, consisting of a book with sheets of tinfoil interleaved in the pages.

One of the twisted-jute polarizers used by Bose

Terahertz polarizers

mm-wave and THz polarizers mainly fall in following category:

Wire grid polarizer

[Takano K et al., Opt Lett. 2011 Jul 15;36(14):2665-7]

Reflection polarizer

[A Wojdyla et al., Opt. Express 19, 14099-14107 (2011)]

- **≻** Reconfigurable
- ➤ Bulky free space

Guided waveguide

Free space setup

[Mazaheri, Z et al., Sci Rep 12, 7342 (2022)]

Miniaturization of system

Guided waveguide setup

[H. -J. Song et al., *Proceedings of the IEEE*, vol. 105, no. 6, pp. 1121-1138]

Hollow waveguides

- Compact, hand-held systems
- Innate control over polarization via guide dimensions

➤ Not adjustable /reconfigurable

Silicon waveguides

- ➤ Emerging low-loss mm-wave and terahertz platform
- > Foundry process (deep reactive ion etching) -> Scalable manufacture
- ➤ Always supports two polarizations → polarization diversity

Fabrication

Contactless manipulation

➤ Unshielded → evanescent fields

- Interfere with evanescent fields
 - → influence propagating waves
- ➤ No modification to DRW → reconfigurable, contactless manipulation

MOTIVATION AND BACKGROUND

PRINCIPLE OF OPERATION

EXPERIMENT AND RESULTS

Principle of operation

Suppress vertical polarization

Horizontal polarization

Modal analysis

Progressive matching structure

- > Broadband transition between unclad and metal-enclosed DRWs
- > Exploit innate curvature of cylindrical metallic optical posts

Progressive matching

MOTIVATION AND BACKGROUND

PRINCIPLE OF OPERATION

EXPERIMENT AND RESULTS

Experimental setup

VNA port 1 →W1coax→WR12→foam → DRW→WR12→w1coax→VNA port 2

Results

Higher order mode WR-12 (60-90GHz)

Increase of cutoff → vertical polarization → working polarizer

MOTIVATION AND BACKGROUND

PRINCIPLE OF OPERATION

EXPERIMENT AND RESULTS

Conclusion

Polarization purity critical in polarization-diverse applications

Inexpensive optical posts operate as mm-wave polarizer for DRW

Evanescent manipulation -> Contactless and reconfigurable

Further work

Potential to realize arbitrary polarization conversion and control

Motorized control, MEMS

<u>Acknowledgement</u>

We acknowledge support from the following Grants:

- ➤ **TERAOPTICS** project (Grant No: 956857) and **TERAWAY** project (Grant No: 871668) funded from the European Union's research and innovation program.
- ➤ Research Executive Agency (REA) Grant Agreement No: 862788 (**TERAmeasure** project) under Horizon 2020 Excellent Science.

That's all for now!

Thank you for your attention

Are there any question?

