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WRIGHT STATE Review of Photoelectric Effect
UNIVERSIT ]

* If light is not being absorbed or emitted by matter, it tends to behave just like RF radiation, meaning that it can be
modeled as a wave phenomenon, displaying the usual effects of reflection, refraction and scattering

« Butif light is absorbed or emitted, it tends to behave in a corpuscular fashion (i.e., like a ”particle”)

* So light is a great example of the so-called "wave-particle duality”: one of the most important concepts in
qguantum physics

* This particle is called a "photon” : a massless and chargless particle, but with energy and momentum
* This was first explained by Einstein (and was the subject of his Nobel prize on the photoelectric effect in 1921)

* The energy of the photon as a particle is E = hv, where h is Planck’s constant h = 6.626x10-3* J-s , and v is the
frequency, v = c¢/A where c is the speed of light in vacuum, and A is the wavelength

* As an example, consider the red light of a HeNe laser, for which A = 632.8 nm, v = 4.74x10'* Hz, hv = 3.14x101° J,
and hv/e = 1.96 electron-volt [eV] (recall that the product of charge and voltage is energy)
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Similar conceptually to the original photoelectric effect describing photo-emission from a solid-state
“cathode” emitting into vacuum toward an “anode”.

However, the “barrier” is not in real space, but rather in energy space. It is just the “band-gap” that
occurs naturally in normal semiconductors and insulators.

a:*fﬁ:;frm:
If hv > Eg, then a single photon can excite tzo N PR
a bound electron in the valence band to g Ec SR RIS
free electron in the conduction band. w 7y
(© v | energy gap—
And as a bonus, a free “hole” will be created "QE;
in the valence band, that can also provide S —— valence band -
photocurrent (although usually with Q.
mobility less than the electron) Ty’ i
hv hole

!
The photocarrier generation rate is proportional to the average absorbed optical power, P,
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WRIGHT STATE Light Sensors (cont)
UNIVERSITY

* Itis traditional to examine the photoresponse as a photocurrent with a current responsivity, R = 1 /P, , so that
R, (v)=[n-e/(hv)IO(v-v...), and R, (A)=[n-e A/(hc)] O(A,.,—A)

* The plots of these two responsivities are shown below for E; = 1.95 eV, corresponding to v, . 0.47x10%> Hz*, and A
= 0.64 um (in the “visible” red-light region); coupling factor ® = 1.0 (ideal case)

max

* They both display the same maximum of R, ., = [®-e-A,, /(hc)] = [® -e/(hv,;))]=0.51A/W for ® =1.0
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* 101 is written as “peta”, so 101° Hz = 1 petahertz [PHz] :
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* Important point: for the ideal photon detector, the maximum of R, ..., =
[@ -e A, /(hC)] increases with A Why is that ?

max *

* Ans: because the photon rater, = Po/hv = A Po/hc increases with wavelength;
i.e., the longer the A, the more photons per watt of optical power.

* This leads to more fundamental metric for photon detectors which is the
external quantum efficiency 1, defined by
Next = €lectron rate in external circuit/incident photon rate
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* But the electronrateis just r,= ® eP,/(ehv) = Ip/e , and the photon rateis
r, =Po/(hv)

O\H

0 2 4 6 8 10

* Hence, n,,,.= D, the fraction of photons usefully absorbed. It is called a “quantum Wavelength [micron]

efficiency since an electron is a quantum of charge, and a photon is a quantum of light
* MNe= 1.0 defines the best possible performance of a photon detector at any A

* Key point: in all cases the photocurrent|,=A -P, =B -(E, > where A and B are

constants, and E,, is the optical electric field .
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WRIGHT STATE Semiconducting Light Detectors
UNIVERSITY
N oy : Photocurrent
* Now suppose we put “ohmic” contacts on opposite ends of the

semiconductor and connect it to an external circuit with bias V. | ‘

* An absorbed photon (hv = E;) will create a free electron and a
free hole, which will then drift in opposite directions.

* As they “drift” toward their respective contacts, a photocurrent
|, will flow in the external circuit, immediately after excitation

 E
vEG
e But they will only continue drifting for a time t, whichisthe 7= @

“lifetime” of the free electron (and hole). photohole
(photoexcitation is a reversible process: an electron and holebe = "t

. : ) Ohmic Contacts -~
excited by a photon, and they can recombine and emit a photon too.)

+ : s
* This process of creating electrons (and holes) with photons, .

changes the semiconductor electrical conductivity too. - .

So the process is often called “photoconductivity” or “photoresistivity” Incident Light

7
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. Semiconducting Light Detectors (cont)
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UNIVERSIT) Candidate Photoconductors
Material Band gap (eV) A nax {am)
SiC 2.0-7.0 ~0.2-0.6 ]
C (diamond) 5.5 0.22
BN 5.0 0.25
NiO 4.0 0.31 — Ultraviolet
ZnS 3.6 0.34
GaN 34 0.36
Zn0O 3.3 0.37 —
CdS 2.41 0.52 = \/isible
CdSe 1.8 0.69 _
CdTe 1.5 0.83 o
GaAs 1.43 0.86
Si 1.12 1.10
Ge 0.67 1.85
InAs 0.35 3.54 — Infrared
PbTe 0.3 4.13
PbSe 0.27 4,58
InSb 0.18 6.90
Hg,55Cd, ;T 0.11 11.0 _

3
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WRIGHT STATE Reducing the Photocarrier Lifetime
UNIVERSIT]

* The lifetime limits the speed-of-response for photoconductors. The “natural” lifetime is where
electrons and holes recombine by emitting a cross-gap photon.

* Natural lifetime is typically ~1 ns in direct-gap semiconductors (e.g. GaAs); much longer for indirect
bandgap semiconductors (e.g., Si).

Optoelectronic Response Function Speeding Up Photocarrier Recombination
Amplitude
A T EIFre'Ere . Conduction
H cctot™() () “Bana
| | it e ittt
R %
|| | — Optical pulse :
H Photocurrent (short lifetime) _ ‘5‘ _ _ . Slowcross-gap
| '|| — Photocurrent (long “natural” lifetime) Fast e-h 3 _ recombination
." '|| Recombination :
lI'I '||. . ——_.,’____: __________
‘ Time ,@ @ Valence
Free .-~
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WRIGHT STATE Reducing the Photocarrier Lifetime
UNIVERSIT]

 The most popular technique is to introduce defects that create a high density-of-states near
mid-gap of the host semiconductor. There are two types of defects:

(1) Induced defects:
(a) lon-implant heavy atoms like Ar. This was done early with Si substrates.
(b) Heavy doping of a metallic species, like As or Er.

(2) Spontaneous defects:
(a) Low-temperature growth
(b) Lattice-mismatched growth

 The goal is to greatly decrease the photocarrier lifetime with minimum impact on the photocarrier
mobilities (this is not an easy thing to do).
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Photoconductive Switch as THz Source

AN
~1 ps
(frep)! pulse train centered
t,~100 fs — Re @ 1 mm (300 GHz)
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First THz Photoconductive Device
Antenna-Coupled Photoconductive Gap

CONTACT
PAD

SILICON />

\ SAPPHIRE
\ SUBSTRATE
PHOTQ
CONDUCTOR
Fig. 1. Antenna structure consisting of the dipole, photoconductor, con-
tact pads, and coplanar strip transmission line between photoconductor
and contact pads. The carrier relaxation time of the silicon was reduced

by using radiation damage with a dose of 3 x 10" ¢cm * 2 MeV Ar’
ions at room temperature,

D. H. Auston, K. P. Cheung and P. R. Smith, "Picosecond photoconducting
Hertzian dipoles”, Appl. Phys. Lett., vol. 45, no. 3, pp. 284-286, Aug. 1984.
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First THz Photoconductive System

First Transmitter-Receiver Combination (Time-Domain Transceiver)
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Fig. 2. Diagram of experimental setup. Substrate surfaces with the anten-
nas are facing each other. The photoconductors are collinear with the
optical beams which illuminate through the substrate from the back. Sep-
aration between the antennas is 2 mm.

P. R. Smith, D. H. Auston and M. C. Nuss, "Subpicosecond photoconductive dipole
antennas", IEEE J. Quantum Electron., vol. 24, no. 2, pp. 255-260, Feb. 1988.
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Pump

Beams hv,

hv,

Similar to optical heterodyning where
a small signal is mixed with a much
stronger (local oscillator) beam

But in photomixing, the two “pump”
beams should have the same power

* Ipb=A-P, =B-(Ey=C-(E;E; ]

where A, B, and C are constants, and
E, E, the frequency-offset optical electric fields.
(perfectly quadratic generation function)

Photoconductive Mixing (Photomixing) as THz Source

V3=|v,— V|

More challenging than PC
switching because of spatial
coherence requirement of two
beams, greater thermal stress,

etc.

— — //
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WRIGHT STATE Breakthrough Material: Low-Temperature-Grown (LTG) GaAs

UNIVERSITY (circa 1990)

.......................................

-----------

....................

Arsenic '- Lo : £
precipitates—~ .o
in GaAs ; : ' '

Matrix

REHAEEREREET

TEEDEEIEEE Decreasing Field Intensity

Buffer Layer

S| GaAs Substrate

To get electron-hole lifetime << 1 ps:

* Grow by MBE at ~200°C or less; yields non-stoichiometric mix of

~1% excess arsenic
* Follow growth by high-temp anneal (>500°C) in arsenic-rich environment
* But, growth temperature of ~200°C is difficult to control and reproduce
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Submicron Interdigital Electrodes

High-Resistivity Si and GaAs Optics

Set-back Hemisphere

Photomixer Chip

N

L&A1

Mm
RERO45 32 . SKU X9,5080 19mm

Interdigital Electrodes greatly increase the THz photomixing
power compared to a simple gap, but have greater capacitance
so contribute to the frequency rolloff of the device.
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Fixed Freq
Ti:AlL,O;Laser
A=774.6 nm

Optical

Analyzer

Spectrum| - - -

Variable Freq
Ti:Al,O; Laser
A >775nm

Experimental Set-Up

Silicon
hyper-hemisphere

Diplexer

v 4

| Optical |
Isolator

Golay cell

: _ (cross-calibrated)
o oA e Mounting
/ 7/ Microscope Yoke

Objective
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WRIGHT STATE First THz Photomixer Study
UNIVERSIT]
(two Ti:Al,O; pump lasers, one LTG-GaAs photomixer)

10.00 ¢
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.E. 1.00 3 =
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3 - Experiment _|
hd
=
@)
0.01
0.1 1

Difference Fredquency (THz]

"Photomixing up to 3.8 THz in low-temperature-grown GaAs," E.R. Brown, K.A.
Mcintosh, K.B. Nichols, and C.L. Dennis, Appl. Phys. Lett., vol. 66, p. 285 (1995)
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UNIVERSITY Effect of Device Capacitance
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“Highly tunable fiber-coupled photomixers with coherent THz output power,” S. Verghese, K. A.
Mclntosh, and E. R. Brown, IEEE Trans. Microwave Theory and Tech, vol. 45(8), pp. 1301-1309 (1997).



WRIGHT STATE The Race to ~“1550-nm THz Devices: Pulsed Operation
UNIVERSITY

* Erbium-doped fiber-amplifier (EDFA) mode-locked lasers

EDFA Single-Pulse Characteristics (by autocorrelation) Single-Pulse Power Spectrum (by OSA)
: ° = e
7 -5 \-_.,
6 N
5 = 10 \
s. 5 = -15 \
— &
s 4 g 20 7
> 3 3 -25 4 Vo
c
2 = 30
1 -35
0 - - -40
(b) -400  -200 0 200 400 1450 1490 1530 1570 1610 1650

Time [fs] (a) Wavelength [nm]



WRIGHT STATE The Race to ~1550-nm THz Devices: CW Operation
UNIVERSITY
Two Frequency-Offset Distributed Feedback (DFB) Diode Lasers Dual DEB Laser Tuning Curve
: =i '“ ' 10
0.1 | | /
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0.01-§ E 780 nm ?d-*‘
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: | T
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(a) Wavelength [nmi (b) A Wavelength [nm]

* Approximately twice as many photons/W at
1550 nm as at 780 nm.
At 1550 nm, tuning range is limited to ~ 2 THz.

* DFB lasers are single-frequency, single-mode output
 Simple to tune by temperature control.
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Another 1550-nm Advantage: Fiber Coupling
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InGaAs-on-InP Materials for 1550-nm Operation

Carrier Mobility Resistivity

Material Reference

lifetime (ps) | (cm?/Vs) (Q.cm)

Be-doped LTG A. Takazato et al., Appl. Phy.

0.35 100 700

InGaAs ' Lett. 90, 10119 (2007)
e o3 s 0 CCamoels sl
cosicars 0z a0 w0 b CDEls
Br-irradiated 0.2 490 3 N. Chimot et al., Appl. Phys.

InGaAs Lett., 87, 193510 (2005)
nGeneinAns L 00 aaaor NS o
Cold-implanted 03 400 1200 A. Fekecs et al., Opt. Mat.

InGaAsP Exp. 1, 1165 (2011)
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WRIGHT STATE State-of-the-Art 1550-nm PC Switch
UNIVERSITY
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https://www.menlosystems.com/assets/datasheets/THz-Time-Domain-
Solutions/MENLO TERA K15 D-EN 2020-05-11 3w.pdf
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WRIGHT STATE InGaAs Photomixer Results
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“I:;I»};EI;TH?;T;H}TF Comparison of InGaAs pin photodiode with MSM Photoconductor
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“Photoconductive THz Sources Driven at 1550 nm,” E.R. Brown, B. Globisch, G. Carpintero del
Barrio, A. Rivera, D. Segovia-Vargas, and A. Steiger, in Fundamentals of Terahertz Devices and
Applications, ed. by D. Pavlidis (John Wiley and Sons, Inc., W. Sussex, UK, 2021).
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Conventional InGaAs pin Photodiode
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optical signal
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Types of InGaAs-Based Photodiodes
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WRIGHT STATE ~ Simulation Results: InGaAs pin photodiode with MSM Photoconductor
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MSM Photoconductor: Ne=13,Ng =12, We = 0.2 um, Wg=0.53um,C=5.2fF, n=0.38
Common Characteristics: active material =In,5,Ga, 5,AS, active area= 81 um?
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Ultimate Limit on THz Photoconductor Generation: Joule Heat
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Laser Beam
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Thank You !

Questions ?



