

Low Power Consumption and Low Phase Noise Broadband DC-40 GHz RFoF Links for Antenna Remoting

Y. Uçar¹, V. Rymanov¹, S.Makhlouf^{1,2}, A. Stöhr^{1,2}

1 Microwave Photonics GmbH, Oberhausen, Germany

2 University of Duisburg-Essen, Duisburg, Germany

yilmaz.ucar@microwave-photonics.com https://microwave-photonics.com +49 208 74171432

Outline

- Motivation
- RF over fiber system basics
- System configurations
- Applications
- System characteristics of developed RFoF system
 - Link gain
 - Saturated output power
 - Noise modelling
 - Noise figure
 - Phase noise
 - Trace noise
- Conclusion

Motivation

- Conventional coaxial cables suffer from
 - High loss over long distance
 - Heavy and bulky
- Exploiting RF over fiber benefits from
 - Low loss operation
 - Broadband
 - Low weight
 - Small size
 - Reconfigurability
 - Immunity to EMI

Conventional Cable*

✓ 3.72 dB/m attenuation✓ ~10 kg/100m

Optical fiber**

✓ 0.2 dB/km attenuation✓ <3kg/100m

- * HUBER+SUHNER SUCOFLEX® 550S
- ** Corning® SMF-28® ULL Optical Fiber

RF over Fiber System Basics

- Optical source
- Electrical source
- Electro-optic modulation
 - Direct modulation
 - External modulation
- Fiber optic
- Opto-electronic conversion

RF over Fiber System Configurations

Applications

- Satellite communications
- Mobile 6G base stations
- Terrestrial fixed wireless access
- Test & measurement
- General use in antenna and LO remoting

Low-power RFoF System

- Electro-absorptive modulated laser (EML)
 - Distributed feedback (DFB) Laser
 - Electro absorption modulator (EAM)
- Receiver side
 - Photoreceiver
 - Photodiode (PD)
 - Transimpedance amplifier (TIA)
- EML is a DFB laser diode with integrated EAM
- EAM has low driving requirements compared to electro-optic
- Uncooled EML to eliminate thermo-electric cooler (TEC)
- TIA to ensure lossless transmission over broad bandwidth
- Conversion gain control of TIA

System Characteristics – Link Gain

- Link gain vs. frequency for DC-40 GHz at -10 dBm RF input power
 - 3 different conversion gain modes
 - >0 dB link gain up to ~30 GHz
- Saturated output power measured between -30 dBm and 0 dBm RF input power at 30 GHz
 - 3 different conversion gain modes of TIA
 - -7.5 dBm maximum RF output power

System Characteristics – Noise Modelling

- Thermal noise equivalent current:
 - $\langle i_t^2 \rangle = 4kTB/R$
 - $N_{TH,av} = -174 \text{ dBm}$; k= 1.38 X 10^{-23} J/K, B=1 Hz and T= 290 K.
- Shot noise equivalent current:

•
$$\langle i_{sn}^2 \rangle = 2q \langle I_D \rangle B$$

RIN equivalent current:

•
$$\langle i_{\text{rin}}^2 \rangle = \frac{\langle I_D \rangle^2}{2} 10^{\frac{\text{RIN}}{10}} \, \text{B}$$

RIN equals to shot noise:

• RIN_{sn} =
$$10 \log \left(\frac{2q}{\langle I_D \rangle} B \right)$$

Noise figure formula:

• NF =
$$10 \log \left(1 + \frac{N_{add}}{g_i N_{in}}\right)$$

Noise figure of RIN-dominated RFoF link:

• NF =
$$10 \log \left(1 + \frac{g_i kTB + \langle i_{rin}^2 \rangle R_{LOAD}}{g_i kTB}\right) = 10 \log \left(2 + \frac{\langle i_{rin}^2 \rangle R_{LOAD}}{s_{md}^2 r_d^2 kTB}\right)$$

System Characteristics – NF & PN

- Noise figure measured frequency range of DC-40 GHz
 - RFoF link w/wo TIA
 - Around 45 dB NF up to 30 GHz
- Noise figure of a cascaded system:

•
$$NF_{cas} = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1G_2} + ...$$

- Attenuation of cable is NF at room temperature
- Phase noise measured at 18 GHz
 - -120 dBc/Hz @10 MHz offset frequency
 - Additive noise

$$- \mathcal{L}(f) = N_{TH} + NF - P_{in}$$

Good agreement between noise modelling and measurement results

10

15

Frequency (GHz)

System Characteristics – Trace Noise

- Trace noise measured 1x2 RFoF distribution link between 5 GHz and 40 GHz
 - Long term measurements >1h with 20s sweep time
 - Less than 0.05 dB drift in magnitude
- Repeated the measurement with RF cables
- Comparable results obtained

Conclusion

- Low power consumption RFoF system presented
 - <1W for entire system
 - Positive link gain up to 30 GHz
 - -7.5 dBm maximum RF output power
- Successfully demonstrated noise modelling of RFoF system
- Noise characteristics of RFoF system demonstrated
 - Around 45 dB NF up to 30 GHz
 - -120 dBc/Hz @10 MHz offset frequency
- Long term trace noise measurements of 1x2 RFoF distribution presented
 - Less than 0.05 dB drift in magnitude

Acknowledgements

The TERAOPTICS project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 956857. TERAOPTICS qualifies 15 experts (early-stage researchers) for the future THz photonics industry and academia.

Thanks!

